Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Unconstrained Face Recognition with Auxiliary Unlabeled Data (2003.07936v2)

Published 17 Mar 2020 in cs.CV

Abstract: In recent years, significant progress has been made in face recognition, which can be partially attributed to the availability of large-scale labeled face datasets. However, since the faces in these datasets usually contain limited degree and types of variation, the resulting trained models generalize poorly to more realistic unconstrained face datasets. While collecting labeled faces with larger variations could be helpful, it is practically infeasible due to privacy and labor cost. In comparison, it is easier to acquire a large number of unlabeled faces from different domains, which could be used to regularize the learning of face representations. We present an approach to use such unlabeled faces to learn generalizable face representations, where we assume neither the access to identity labels nor domain labels for unlabeled images. Experimental results on unconstrained datasets show that a small amount of unlabeled data with sufficient diversity can (i) lead to an appreciable gain in recognition performance and (ii) outperform the supervised baseline when combined with less than half of the labeled data. Compared with the state-of-the-art face recognition methods, our method further improves their performance on challenging benchmarks, such as IJB-B, IJB-C and IJB-S.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yichun Shi (40 papers)
  2. Anil K. Jain (92 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.