Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Lie algebra crossed modules to tensor hierarchies (2003.07838v6)

Published 17 Mar 2020 in math-ph, hep-th, math.AT, and math.MP

Abstract: The present paper, though inspired by the use of tensor hierarchies in theoretical physics, establishes their mathematical credentials, especially as genetically related to Lie algebra crossed modules. Gauging procedures in supergravity rely on a pairing - the embedding tensor - between a Leibniz algebra and a Lie algebra. Two such algebras, together with their embedding tensor, form a triple called a Lie-Leibniz triple, of which Lie algebra crossed modules are particular cases. This paper is devoted to showing that any Lie-Leibniz triple induces a differential graded Lie algebra - its associated tensor hierarchy - whose restriction to the category of Lie algebra crossed modules is the canonical assignment associating to any Lie algebra crossed module its corresponding unique 2-term differential graded Lie algebra. This shows that Lie-Leibniz triples form natural generalizations of Lie algebra crossed modules and that their associated tensor hierarchies can be considered as some kind of 'lie-ization' of the former. We deem the present construction of such tensor hierarchies clearer and more straightforward than previous derivations. We stress that such a construction suggests the existence of further well-defined Leibniz gauge theories.

Summary

We haven't generated a summary for this paper yet.