Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Assortment and Market Segmentation under Bertrand Competition with Set-Dependent Revenues (2003.07695v5)

Published 14 Mar 2020 in cs.GT and math.OC

Abstract: We consider an online assortment problem with $[n]:={1,2,\ldots,n}$ sellers, each holding exactly one item $i\in[n]$ with initial inventory $c_i\in \mathbb{Z}_+$, and a sequence of homogeneous buyers arriving over a finite time horizon $t=1,2,\ldots,m$. There is an online platform whose goal is to offer a subset $S_t\subseteq [n]$ of sellers to the arriving buyer at time $t$ to maximize the expected revenue derived over the entire horizon while respecting the inventory constraints. Given an assortment $S_t$ at time $t$, it is assumed that the buyer will select an item from $S_t$ based on the well-known multinomial logit model, a well-justified choice model from the economic literature. In this model, the revenue obtained from selling an item $i$ at a given time $t$ critically depends on the assortment $S_t$ offered at that time and is given by the Nash equilibrium of a Bertrand game among the sellers in $S_t$. This imposes a strong dependence/externality among the offered assortments, sellers' revenues, and inventory levels. Despite that challenge, we devise a constant competitive algorithm for the online assortment problem with homogeneous buyers. We also show that the online assortment problem with heterogeneous buyers does not admit a constant competitive algorithm. To compensate for that issue, we then consider the assortment problem under an offline setting with heterogeneous buyers. Under a mild market consistency assumption, we show that the generalized Bertrand game admits a pure Nash equilibrium over general buyer-seller bipartite graphs. Finally, we develop an $O(\ln m)$-approximation algorithm for optimal market segmentation of the generalized Bertrand game which allows the platform to derive higher revenues by partitioning the market into smaller pools.

Citations (2)

Summary

We haven't generated a summary for this paper yet.