Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tuning Ranking in Co-occurrence Networks with General Biased Exchange-based Diffusion on Hyper-bag-graphs (2003.07323v1)

Published 16 Mar 2020 in cs.SI, cs.DM, and math.CO

Abstract: Co-occurence networks can be adequately modeled by hyper-bag-graphs (hb-graphs for short). A hb-graph is a family of multisets having same universe, called the vertex set. An efficient exchange-based diffusion scheme has been previously proposed that allows the ranking of both vertices and hb-edges. In this article, we extend this scheme to allow biases of different kinds and explore their effect on the different rankings obtained. The biases enhance the emphasize on some particular aspects of the network.

Citations (2)

Summary

We haven't generated a summary for this paper yet.