Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly-Supervised Multi-Level Attentional Reconstruction Network for Grounding Textual Queries in Videos (2003.07048v1)

Published 16 Mar 2020 in cs.CV

Abstract: The task of temporally grounding textual queries in videos is to localize one video segment that semantically corresponds to the given query. Most of the existing approaches rely on segment-sentence pairs (temporal annotations) for training, which are usually unavailable in real-world scenarios. In this work we present an effective weakly-supervised model, named as Multi-Level Attentional Reconstruction Network (MARN), which only relies on video-sentence pairs during the training stage. The proposed method leverages the idea of attentional reconstruction and directly scores the candidate segments with the learnt proposal-level attentions. Moreover, another branch learning clip-level attention is exploited to refine the proposals at both the training and testing stage. We develop a novel proposal sampling mechanism to leverage intra-proposal information for learning better proposal representation and adopt 2D convolution to exploit inter-proposal clues for learning reliable attention map. Experiments on Charades-STA and ActivityNet-Captions datasets demonstrate the superiority of our MARN over the existing weakly-supervised methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yijun Song (4 papers)
  2. Jingwen Wang (34 papers)
  3. Lin Ma (206 papers)
  4. Zhou Yu (206 papers)
  5. Jun Yu (232 papers)
Citations (59)