Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A semi-supervised sparse K-Means algorithm (2003.06973v5)

Published 16 Mar 2020 in cs.LG and stat.ML

Abstract: We consider the problem of data clustering with unidentified feature quality and when a small amount of labelled data is provided. An unsupervised sparse clustering method can be employed in order to detect the subgroup of features necessary for clustering and a semi-supervised method can use the labelled data to create constraints and enhance the clustering solution. In this paper we propose a K-Means variant that employs these techniques. We show that the algorithm maintains the high performance of other semi-supervised algorithms and in addition preserves the ability to identify informative from uninformative features. We examine the performance of the algorithm on synthetic and real world data sets. We use scenarios of different number and types of constraints as well as different clustering initialisation methods.

Citations (16)

Summary

We haven't generated a summary for this paper yet.