Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounded-Rational Pursuit-Evasion Games (2003.06954v1)

Published 16 Mar 2020 in eess.SY and cs.SY

Abstract: We present a framework that incorporates the idea of bounded rationality into dynamic stochastic pursuit-evasion games. The solution of a stochastic game is characterized, in general, by its (Nash) equilibria in feedback form. However, computing these Nash equilibrium strategies may require extensive computational resources. In this paper, the agents are modeled as bounded rational entities having limited computational resources. We illustrate the framework by applying it to a pursuit-evasion game between two vehicles in a stochastic wind field, where both the pursuer and the evader are bounded rational. We show how such a game may be analyzed by properly casting it as an iterative sequence of finite-state Markov Decision Processes (MDPs). Leveraging tools and algorithms from cognitive hierarchy theory ("level-$k$ thinking") we compute the solution of the ensuing discrete game, while taking into consideration the rationality level of each agent. We also present an online algorithm for each agent to infer its opponent rationality level.

Citations (9)

Summary

We haven't generated a summary for this paper yet.