Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RCNet: Incorporating Structural Information into Deep RNN for MIMO-OFDM Symbol Detection with Limited Training (2003.06923v1)

Published 15 Mar 2020 in eess.SP and cs.LG

Abstract: In this paper, we investigate learning-based MIMO-OFDM symbol detection strategies focusing on a special recurrent neural network (RNN) -- reservoir computing (RC). We first introduce the Time-Frequency RC to take advantage of the structural information inherent in OFDM signals. Using the time domain RC and the time-frequency RC as the building blocks, we provide two extensions of the shallow RC to RCNet: 1) Stacking multiple time domain RCs; 2) Stacking multiple time-frequency RCs into a deep structure. The combination of RNN dynamics, the time-frequency structure of MIMO-OFDM signals, and the deep network enables RCNet to handle the interference and nonlinear distortion of MIMO-OFDM signals to outperform existing methods. Unlike most existing NN-based detection strategies, RCNet is also shown to provide a good generalization performance even with a limited training set (i.e, similar amount of reference signals/training as standard model-based approaches). Numerical experiments demonstrate that the introduced RCNet can offer a faster learning convergence and as much as 20% gain in bit error rate over a shallow RC structure by compensating for the nonlinear distortion of the MIMO-OFDM signal, such as due to power amplifier compression in the transmitter or due to finite quantization resolution in the receiver.

Citations (34)

Summary

We haven't generated a summary for this paper yet.