Papers
Topics
Authors
Recent
Search
2000 character limit reached

On unsteady flows of pore pressure-activated granular materials

Published 15 Mar 2020 in math.AP, math-ph, and math.MP | (2003.06912v1)

Abstract: We investigate mathematical properties of the system of nonlinear partial differential equations that describe, under certain simplifying assumptions, evolutionary processes in water-saturated granular materials. The unconsolidated solid matrix behaves as an ideal plastic material before the activation takes place and then it starts to flow as a Newtonian or a generalized Newtonian fluid. The plastic yield stress is non-constant and depends on the difference between the given lithostatic pressure and the pressure of the fluid in a pore space. We study unsteady three-dimensional flows in an impermeable container, subject to stick-slip boundary conditions. Under realistic assumptions on the data, we establish long-time and large-data existence theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.