Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Approximation, Bounding & Exact Calculation of Block Error Probability for Random Code Ensembles (2003.06807v4)

Published 15 Mar 2020 in cs.IT and math.IT

Abstract: This paper presents a method to calculate the exact average block error probability of some random code ensembles under maximum-likelihood decoding. The proposed method is applicable to various channels and ensembles. The focus is on both spherical and Gaussian random codes on the additive white Gaussian noise channel as well as binary random codes on both the binary symmetric channel and the binary erasure channel. While for the uniform spherical ensemble Shannon, in 1959, argued with solid angles in $N$-dimensional space, the presented approach projects the problem into two dimensions and applies standard trigonometry. This simplifies the derivation and also allows for the analysis of the independent identically distributed (i.i.d.) Gaussian ensemble which turns out to perform better for short blocklengths and high rates. Moreover, a new lower bound on the average block error probability of the uniform spherical ensemble is found. For codes with more than three codewords, it is tighter than the sphere packing bound, but requires exactly the same computing effort. Furthermore, tight approximations are proposed to simplify the computation of both the exact average error probability and the two bounds. For the binary symmetric channel and the binary erasure channel, bounds on the average block error probability for i.i.d.\ random coding are derived and compared to the exact calculations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ralf R. Müller (58 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.