Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary Guidance Hierarchical Network for Real-Time Tongue Segmentation (2003.06529v1)

Published 14 Mar 2020 in eess.IV, cs.CV, and cs.LG

Abstract: Automated tongue image segmentation in tongue images is a challenging task for two reasons: 1) there are many pathological details on the tongue surface, which affect the extraction of the boundary; 2) the shapes of the tongues captured from various persons (with different diseases) are quite different. To deal with the challenge, a novel end-to-end Boundary Guidance Hierarchical Network (BGHNet) with a new hybrid loss is proposed in this paper. In the new approach, firstly Context Feature Encoder Module (CFEM) is built upon the bottomup pathway to confront with the shrinkage of the receptive field. Secondly, a novel hierarchical recurrent feature fusion module (HRFFM) is adopt to progressively and hierarchically refine object maps to recover image details by integrating local context information. Finally, the proposed hybrid loss in a four hierarchy-pixel, patch, map and boundary guides the network to effectively segment the tongue regions and accurate tongue boundaries. BGHNet is applied to a set of tongue images. The experimental results suggest that the proposed approach can achieve the latest tongue segmentation performance. And in the meantime, the lightweight network contains only 15.45M parameters and performs only 11.22GFLOPS.

Citations (2)

Summary

We haven't generated a summary for this paper yet.