Papers
Topics
Authors
Recent
Search
2000 character limit reached

Toward fitting structured nonlinear systems by means of dynamic mode decomposition

Published 13 Mar 2020 in math.NA and cs.NA | (2003.06484v2)

Abstract: The dynamic mode decomposition (DMD) is a data-driven method used for identifying the dynamics of complex nonlinear systems. It extracts important characteristics of the underlying dynamics using measured time-domain data produced either by means of experiments or by numerical simulations. In the original methodology, the measurements are assumed to be approximately related by a linear operator. Hence, a linear discrete-time system is fitted to the given data. However, often, nonlinear systems modeling physical phenomena have a particular known structure. In this contribution, we propose an identification and reduction method based on the classical DMD approach allowing to fit a structured nonlinear system to the measured data. We mainly focus on two types of nonlinearities: bilinear and quadratic-bilinear. By enforcing this additional structure, more insight into extracting the nonlinear behavior of the original process is gained. Finally, we demonstrate the proposed methodology for different examples, such as the Burgers' equation and the coupled van der Pol oscillators.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.