Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite-dimensional modules of the universal Askey--Wilson algebra and DAHA of type $(C_1^\vee,C_1)$ (2003.06252v3)

Published 12 Mar 2020 in math.RT, math.CO, and math.QA

Abstract: Assume that $\mathbb F$ is an algebraically closed field and let $q$ denote a nonzero scalar in $\mathbb F$ that is not a root of unity. The universal Askey--Wilson algebra $\triangle_q$ is a unital associative $\mathbb F$-algebra defined by generators and relations. The generators are $A,B, C$ and the relations state that each of $$ A+\frac{q BC-q{-1} CB}{q2-q{-2}}, \qquad B+\frac{q CA-q{-1} AC}{q2-q{-2}}, \qquad C+\frac{q AB-q{-1} BA}{q2-q{-2}} $$ is central in $\triangle_q$. The universal DAHA (double affine Hecke algebra) $\mathfrak H_q$ of type $(C_1\vee,C_1)$ is a unital associative $\mathbb F$-algebra generated by ${t_i{\pm 1}}_{i=0}3$ and the relations state that \begin{gather*} t_it_i{-1}=t_i{-1} t_i=1 \quad \hbox{for all $i=0,1,2,3$}; \ \hbox{$t_i+t_i{-1}$ is central} \quad \hbox{for all $i=0,1,2,3$}; \ t_0t_1t_2t_3=q{-1}. \end{gather*} Each $\mathfrak H_q$-module is a $\triangle_q$-module by pulling back via the injection $\triangle_q\to \mathfrak H_q$ given by \begin{eqnarray*} A &\mapsto & t_1 t_0+(t_1 t_0){-1}, \ B &\mapsto & t_3 t_0+(t_3 t_0){-1}, \ C &\mapsto & t_2 t_0+(t_2 t_0){-1}. \end{eqnarray*} We classify the lattices of $\triangle_q$-submodules of finite-dimensional irreducible $\mathfrak H_q$-modules. As a consequence, for any finite-dimensional irreducible $\mathfrak H_q$-module $V$, the $\triangle_q$-module $V$ is completely reducible if and only if $t_0$ is diagonalizable on $V$.

Summary

We haven't generated a summary for this paper yet.