Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization of Generalized Jacobian Chain Products without Memory Constraints (2003.05755v3)

Published 12 Mar 2020 in math.NA, cs.DM, cs.MS, and cs.NA

Abstract: The efficient computation of Jacobians represents a fundamental challenge in computational science and engineering. Large-scale modular numerical simulation programs can be regarded as sequences of evaluations of in our case differentiable modules with corresponding local Jacobians. The latter are typically not available. Tangent and adjoint versions of the individual modules are assumed to be given as results of algorithmic differentiation instead. The classical (Jacobian) matrix chain product formulation is extended with the optional evaluation of matrix-free Jacobian-matrix and matrix-Jacobian products as tangents and adjoints. We propose a dynamic programming algorithm for the minimization of the computational cost of such generalized Jacobian chain products without considering constraints on the available persistent system memory. In other words, the naive evaluation of an adjoint of the entire simulation program is assumed to be a feasible option. No checkpointing is required. Under the given assumptions we obtain optimal solutions which improve the best state of the art methods by factors of up to seven on a set of randomly generated problem instances of growing size.

Citations (4)

Summary

We haven't generated a summary for this paper yet.