Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deriving peridynamic influence functions for one-dimensional elastic materials with periodic microstructure (2003.05520v1)

Published 4 Mar 2020 in cs.CE

Abstract: The influence function in peridynamic material models has a large effect on the dynamic behavior of elastic waves and in turn can greatly effect dynamic simulations of fracture propagation and material failure. Typically, the influence functions that are used in peridynamic models are selected for their numerical properties without regard to physical considerations. In this work, we present a method of deriving the peridynamic influence function for a one-dimensional initial/boundary value problem in a material with periodic microstructure. Starting with the linear local elastodynamic equation of motion in the microscale, we first use polynomial anzatzes to approximate microstructural displacements and then derive the homogenized nonlocal dynamic equation of motion for the macroscopic displacements; which, is easily reformulated as linear peridyamic equation with a discrete influence function. The shape and localization of the discrete influence function is completely determined by microstructural mechanical properties and length scales. By comparison with a highly resolved microstructural finite element model and the standard linear peridynamic model with a linearly decaying influence function, we demonstrate that the influence function derived from microstructural considerations is more accurate in predicting time dependent displacements and wave dynamics.

Citations (16)

Summary

We haven't generated a summary for this paper yet.