Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth (2003.05508v2)

Published 11 Mar 2020 in stat.ML, cs.LG, cs.NA, math.NA, and math.OC

Abstract: Training deep neural networks with stochastic gradient descent (SGD) can often achieve zero training loss on real-world tasks although the optimization landscape is known to be highly non-convex. To understand the success of SGD for training deep neural networks, this work presents a mean-field analysis of deep residual networks, based on a line of works that interpret the continuum limit of the deep residual network as an ordinary differential equation when the network capacity tends to infinity. Specifically, we propose a new continuum limit of deep residual networks, which enjoys a good landscape in the sense that every local minimizer is global. This characterization enables us to derive the first global convergence result for multilayer neural networks in the mean-field regime. Furthermore, without assuming the convexity of the loss landscape, our proof relies on a zero-loss assumption at the global minimizer that can be achieved when the model shares a universal approximation property. Key to our result is the observation that a deep residual network resembles a shallow network ensemble, i.e. a two-layer network. We bound the difference between the shallow network and our ResNet model via the adjoint sensitivity method, which enables us to apply existing mean-field analyses of two-layer networks to deep networks. Furthermore, we propose several novel training schemes based on the new continuous model, including one training procedure that switches the order of the residual blocks and results in strong empirical performance on the benchmark datasets.

Citations (74)

Summary

We haven't generated a summary for this paper yet.