Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geostatistical Modeling and Prediction Using Mixed-Precision Tile Cholesky Factorization (2003.05324v1)

Published 8 Jan 2020 in cs.DC

Abstract: Geostatistics represents one of the most challenging classes of scientific applications due to the desire to incorporate an ever increasing number of geospatial locations to accurately model and predict environmental phenomena. For example, the evaluation of the Gaussian log-likelihood function, which constitutes the main computational phase, involves solving systems of linear equations with a large dense symmetric and positive definite covariance matrix. Cholesky, the standard algorithm, requires O(n3) floating point operators and has an O(n2) memory footprint, where n is the number of geographical locations. Here, we present a mixed-precision tile algorithm to accelerate the Cholesky factorization during the log-likelihood function evaluation. Under an appropriate ordering, it operates with double-precision arithmetic on tiles around the diagonal, while reducing to single-precision arithmetic for tiles sufficiently far off. This translates into an improvement of the performance without any deterioration of the numerical accuracy of the application. We rely on the StarPU dynamic runtime system to schedule the tasks and to overlap them with data movement. To assess the performance and the accuracy of the proposed mixed-precision algorithm, we use synthetic and real datasets on various shared and distributed-memory systems possibly equipped with hardware accelerators. We compare our mixed-precision Cholesky factorization against the double-precision reference implementation as well as an independent block approximation method. We obtain an average of 1.6X performance speedup on massively parallel architectures while maintaining the accuracy necessary for modeling and prediction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sameh Abdulah (23 papers)
  2. Hatem Ltaief (25 papers)
  3. Ying Sun (154 papers)
  4. Marc G. Genton (85 papers)
  5. David E. Keyes (27 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.