Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite cubic graphs admitting an cyclic group of automorphisms with at most three orbits on vertices (2003.05186v1)

Published 11 Mar 2020 in math.CO

Abstract: The theory of voltage graphs has become a standard tool in the study graphs admitting a semiregular group of automorphisms. We introduce the notion of a cyclic generalised voltage graph to extend the scope of this theory to graphs admitting a cyclic group of automorphism that may not be semiregular. We use this new tool to classify all cubic graphs admitting a cyclic group of automorphisms with at most three vertex-orbits and we characterise vertextransitivity for each of these classes. In particular, we show that a cubic vertex-transitive graph admitting a cyclic group of automorphisms with at most three orbits on vertices either belongs to one of 5 infinite families or is isomorphic to the well-know Tutte-Coxeter graph.

Summary

We haven't generated a summary for this paper yet.