Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernel Quantization for Efficient Network Compression (2003.05148v1)

Published 11 Mar 2020 in cs.LG and stat.ML

Abstract: This paper presents a novel network compression framework Kernel Quantization (KQ), targeting to efficiently convert any pre-trained full-precision convolutional neural network (CNN) model into a low-precision version without significant performance loss. Unlike existing methods struggling with weight bit-length, KQ has the potential in improving the compression ratio by considering the convolution kernel as the quantization unit. Inspired by the evolution from weight pruning to filter pruning, we propose to quantize in both kernel and weight level. Instead of representing each weight parameter with a low-bit index, we learn a kernel codebook and replace all kernels in the convolution layer with corresponding low-bit indexes. Thus, KQ can represent the weight tensor in the convolution layer with low-bit indexes and a kernel codebook with limited size, which enables KQ to achieve significant compression ratio. Then, we conduct a 6-bit parameter quantization on the kernel codebook to further reduce redundancy. Extensive experiments on the ImageNet classification task prove that KQ needs 1.05 and 1.62 bits on average in VGG and ResNet18, respectively, to represent each parameter in the convolution layer and achieves the state-of-the-art compression ratio with little accuracy loss.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhongzhi Yu (25 papers)
  2. Yemin Shi (18 papers)
  3. Tiejun Huang (130 papers)
  4. Yizhou Yu (148 papers)
Citations (3)