Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pruned Neural Networks are Surprisingly Modular (2003.04881v6)

Published 10 Mar 2020 in cs.NE and cs.LG

Abstract: The learned weights of a neural network are often considered devoid of scrutable internal structure. To discern structure in these weights, we introduce a measurable notion of modularity for multi-layer perceptrons (MLPs), and investigate the modular structure of MLPs trained on datasets of small images. Our notion of modularity comes from the graph clustering literature: a "module" is a set of neurons with strong internal connectivity but weak external connectivity. We find that training and weight pruning produces MLPs that are more modular than randomly initialized ones, and often significantly more modular than random MLPs with the same (sparse) distribution of weights. Interestingly, they are much more modular when trained with dropout. We also present exploratory analyses of the importance of different modules for performance and how modules depend on each other. Understanding the modular structure of neural networks, when such structure exists, will hopefully render their inner workings more interpretable to engineers. Note that this paper has been superceded by "Clusterability in Neural Networks", arxiv:2103.03386 and "Quantifying Local Specialization in Deep Neural Networks", arxiv:2110.08058!

Citations (8)

Summary

We haven't generated a summary for this paper yet.