Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Optimal Condition of Robust Low-rank Matrices Recovery

Published 10 Mar 2020 in cs.IT and math.IT | (2003.04766v1)

Abstract: In this paper we investigate the reconstruction conditions of nuclear norm minimization for low-rank matrix recovery. We obtain sufficient conditions $\delta_{tr}<t/(4-t)$ with $0<t<4/3$ to guarantee the robust reconstruction $(z\neq0)$ or exact reconstruction $(z=0)$ of all rank $r$ matrices $X\in\mathbb{R}{m\times n}$ from $b=\mathcal{A}(X)+z$ via nuclear norm minimization. Furthermore, we not only show that when $t=1$, the upper bound of $\delta_r<1/3$ is the same as the result of Cai and Zhang \cite{Cai and Zhang}, but also demonstrate that the gained upper bounds concerning the recovery error are better. Moreover, we prove that the restricted isometry property condition is sharp. Besides, the numerical experiments are conducted to reveal the nuclear norm minimization method is stable and robust for the recovery of low-rank matrix.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.