Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the Pseudospectral Abscissa of Time-Delay Systems (2003.04737v1)

Published 6 Mar 2020 in eess.SY and cs.SY

Abstract: The pseudospectra of a linear time-invariant system are the sets in the complex plane consisting of all the roots of the characteristic equation when the system matrices are subjected to all possible perturbations with a given upper bound. The pseudospectral abscissa are defined as the maximum real part of the characteristic roots in the pseudospectra and, therefore, they are for instance important from a robust stability point of view. In this paper we present a numerical method for the computation of the pseudospectral abscissa of retarded delay differential equations with discrete pointwise delays. Our approach is based on the connections between the pseudospectra and the level sets of an appropriately defined complex function. These connections lead us to a bisection algorithm for the computation of the pseudospectral abscissa, where each step relies on checking the presence of imaginary axis eigenvalues of an appropriately defined operator. Because this operator is infinite-dimensional a predictor-corrector approach is taken. In the predictor step the bisection algorithm is applied where the operator is discretized into a matrix, yielding approximations for the pseudospectral abscissa. The effect of the discretization is fully characterized in the paper. In the corrector step, the approximate pseudospectral abscissa are corrected to any given accuracy, by solving a set of nonlinear equations that characterize extreme points in the pseudospectra contours.

Summary

We haven't generated a summary for this paper yet.