Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closure Properties for Private Classification and Online Prediction (2003.04509v3)

Published 10 Mar 2020 in cs.LG and stat.ML

Abstract: Let~$\cH$ be a class of boolean functions and consider a {\it composed class} $\cH'$ that is derived from~$\cH$ using some arbitrary aggregation rule (for example, $\cH'$ may be the class of all 3-wise majority-votes of functions in $\cH$). We upper bound the Littlestone dimension of~$\cH'$ in terms of that of~$\cH$. As a corollary, we derive closure properties for online learning and private PAC learning. The derived bounds on the Littlestone dimension exhibit an undesirable exponential dependence. For private learning, we prove close to optimal bounds that circumvents this suboptimal dependency. The improved bounds on the sample complexity of private learning are derived algorithmically via transforming a private learner for the original class $\cH$ to a private learner for the composed class~$\cH'$. Using the same ideas we show that any ({\em proper or improper}) private algorithm that learns a class of functions $\cH$ in the realizable case (i.e., when the examples are labeled by some function in the class) can be transformed to a private algorithm that learns the class $\cH$ in the agnostic case.

Citations (21)

Summary

We haven't generated a summary for this paper yet.