Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross modal video representations for weakly supervised active speaker localization (2003.04358v2)

Published 9 Mar 2020 in cs.CV and cs.MM

Abstract: An objective understanding of media depictions, such as inclusive portrayals of how much someone is heard and seen on screen such as in film and television, requires the machines to discern automatically who, when, how, and where someone is talking, and not. Speaker activity can be automatically discerned from the rich multimodal information present in the media content. This is however a challenging problem due to the vast variety and contextual variability in the media content, and the lack of labeled data. In this work, we present a cross-modal neural network for learning visual representations, which have implicit information pertaining to the spatial location of a speaker in the visual frames. Avoiding the need for manual annotations for active speakers in visual frames, acquiring of which is very expensive, we present a weakly supervised system for the task of localizing active speakers in movie content. We use the learned cross-modal visual representations, and provide weak supervision from movie subtitles acting as a proxy for voice activity, thus requiring no manual annotations. We evaluate the performance of the proposed system on the AVA active speaker dataset and demonstrate the effectiveness of the cross-modal embeddings for localizing active speakers in comparison to fully supervised systems. We also demonstrate state-of-the-art performance for the task of voice activity detection in an audio-visual framework, especially when speech is accompanied by noise and music.

Citations (8)

Summary

We haven't generated a summary for this paper yet.