Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized SGD with Over-the-Air Computation (2003.04216v1)

Published 6 Mar 2020 in eess.SP, cs.DC, cs.IT, cs.LG, math.IT, and stat.ML

Abstract: We study the performance of decentralized stochastic gradient descent (DSGD) in a wireless network, where the nodes collaboratively optimize an objective function using their local datasets. Unlike the conventional setting, where the nodes communicate over error-free orthogonal communication links, we assume that transmissions are prone to additive noise and interference.We first consider a point-to-point (P2P) transmission strategy, termed the OAC-P2P scheme, in which the node pairs are scheduled in an orthogonal fashion to minimize interference. Since in the DSGD framework, each node requires a linear combination of the neighboring models at the consensus step, we then propose the OAC-MAC scheme, which utilizes the signal superposition property of the wireless medium to achieve over-the-air computation (OAC). For both schemes, we cast the scheduling problem as a graph coloring problem. We numerically evaluate the performance of these two schemes for the MNIST image classification task under various network conditions. We show that the OAC-MAC scheme attains better convergence performance with a fewer communication rounds.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Emre Ozfatura (33 papers)
  2. Stefano Rini (78 papers)
  3. Deniz Gunduz (506 papers)
Citations (37)

Summary

We haven't generated a summary for this paper yet.