Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficiency and Equity are Both Essential: A Generalized Traffic Signal Controller with Deep Reinforcement Learning (2003.04046v3)

Published 9 Mar 2020 in cs.LG, eess.SP, and stat.ML

Abstract: Traffic signal controllers play an essential role in today's traffic system. However, the majority of them currently is not sufficiently flexible or adaptive to generate optimal traffic schedules. In this paper we present an approach to learning policies for signal controllers using deep reinforcement learning aiming for optimized traffic flow. Our method uses a novel formulation of the reward function that simultaneously considers efficiency and equity. We furthermore present a general approach to find the bound for the proposed equity factor and we introduce the adaptive discounting approach that greatly stabilizes learning and helps to maintain a high flexibility of green light duration. The experimental evaluations on both simulated and real-world data demonstrate that our proposed algorithm achieves state-of-the-art performance (previously held by traditional non-learning methods) on a wide range of traffic situations.

Citations (8)

Summary

We haven't generated a summary for this paper yet.