Papers
Topics
Authors
Recent
2000 character limit reached

Theoretical Analysis of Divide-and-Conquer ERM: Beyond Square Loss and RKHS

Published 9 Mar 2020 in cs.LG and stat.ML | (2003.03882v3)

Abstract: Theoretical analysis of the divide-and-conquer based distributed learning with least square loss in the reproducing kernel Hilbert space (RKHS) have recently been explored within the framework of learning theory. However, the studies on learning theory for general loss functions and hypothesis spaces remain limited. To fill the gap, we study the risk performance of distributed empirical risk minimization (ERM) for general loss functions and hypothesis spaces. The main contributions are two-fold. First, we derive two tight risk bounds under certain basic assumptions on the hypothesis space, as well as the smoothness, Lipschitz continuity, strong convexity of the loss function. Second, we further develop a more general risk bound for distributed ERM without the restriction of strong convexity.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.