Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Fast Loaded Dice Roller: A Near-Optimal Exact Sampler for Discrete Probability Distributions (2003.03830v2)

Published 8 Mar 2020 in stat.CO, cs.DM, cs.DS, cs.IT, math.IT, and math.PR

Abstract: This paper introduces a new algorithm for the fundamental problem of generating a random integer from a discrete probability distribution using a source of independent and unbiased random coin flips. We prove that this algorithm, which we call the Fast Loaded Dice Roller (FLDR), is highly efficient in both space and time: (i) the size of the sampler is guaranteed to be linear in the number of bits needed to encode the input distribution; and (ii) the expected number of bits of entropy it consumes per sample is at most 6 bits more than the information-theoretically optimal rate. We present fast implementations of the linear-time preprocessing and near-optimal sampling algorithms using unsigned integer arithmetic. Empirical evaluations on a broad set of probability distributions establish that FLDR is 2x-10x faster in both preprocessing and sampling than multiple baseline algorithms, including the widely-used alias and interval samplers. It also uses up to 10000x less space than the information-theoretically optimal sampler, at the expense of less than 1.5x runtime overhead.

Citations (6)

Summary

We haven't generated a summary for this paper yet.