Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Removing Disparate Impact of Differentially Private Stochastic Gradient Descent on Model Accuracy (2003.03699v2)

Published 8 Mar 2020 in cs.LG, cs.CR, cs.CY, and stat.ML

Abstract: When we enforce differential privacy in machine learning, the utility-privacy trade-off is different w.r.t. each group. Gradient clipping and random noise addition disproportionately affect underrepresented and complex classes and subgroups, which results in inequality in utility loss. In this work, we analyze the inequality in utility loss by differential privacy and propose a modified differentially private stochastic gradient descent (DPSGD), called DPSGD-F, to remove the potential disparate impact of differential privacy on the protected group. DPSGD-F adjusts the contribution of samples in a group depending on the group clipping bias such that differential privacy has no disparate impact on group utility. Our experimental evaluation shows how group sample size and group clipping bias affect the impact of differential privacy in DPSGD, and how adaptive clipping for each group helps to mitigate the disparate impact caused by differential privacy in DPSGD-F.

Citations (20)

Summary

We haven't generated a summary for this paper yet.