Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ECSP: A New Task for Emotion-Cause Span-Pair Extraction and Classification (2003.03507v1)

Published 7 Mar 2020 in cs.CL

Abstract: Emotion cause analysis such as emotion cause extraction (ECE) and emotion-cause pair extraction (ECPE) have gradually attracted the attention of many researchers. However, there are still two shortcomings in the existing research: 1) In most cases, emotion expression and cause are not the whole clause, but the span in the clause, so extracting the clause-pair rather than the span-pair greatly limits its applications in real-world scenarios; 2) It is not enough to extract the emotion expression clause without identifying the emotion categories, the presence of emotion clause does not necessarily convey emotional information explicitly due to different possible causes. In this paper, we propose a new task: Emotion-Cause Span-Pair extraction and classification (ECSP), which aims to extract the potential span-pair of emotion and corresponding causes in a document, and make emotion classification for each pair. In the new ECSP task, ECE and ECPE can be regarded as two special cases at the clause-level. We propose a span-based extract-then-classify (ETC) model, where emotion and cause are directly extracted and paired from the document under the supervision of target span boundaries, and corresponding categories are then classified using their pair representations and localized context. Experiments show that our proposed ETC model outperforms the SOTA model of ECE and ECPE task respectively and gets a fair-enough results on ECSP task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hongliang Bi (1 paper)
  2. Pengyuan Liu (10 papers)
Citations (10)