Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recognizing Affiliation: Using Behavioural Traces to Predict the Quality of Social Interactions in Online Games (2003.03438v1)

Published 6 Mar 2020 in cs.HC and cs.LG

Abstract: Online social interactions in multiplayer games can be supportive and positive or toxic and harmful; however, few methods can easily assess interpersonal interaction quality in games. We use behavioural traces to predict affiliation between dyadic strangers, facilitated through their social interactions in an online gaming setting. We collected audio, video, in-game, and self-report data from 23 dyads, extracted 75 features, trained Random Forest and Support Vector Machine models, and evaluated their performance predicting binary (high/low) as well as continuous affiliation toward a partner. The models can predict both binary and continuous affiliation with up to 79.1% accuracy (F1) and 20.1% explained variance (R2) on unseen data, with features based on verbal communication demonstrating the highest potential. Our findings can inform the design of multiplayer games and game communities, and guide the development of systems for matchmaking and mitigating toxic behaviour in online games.

Citations (25)

Summary

We haven't generated a summary for this paper yet.