Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asynchronous and Parallel Distributed Pose Graph Optimization (2003.03281v4)

Published 6 Mar 2020 in math.OC, cs.MA, and cs.RO

Abstract: We present Asynchronous Stochastic Parallel Pose Graph Optimization (ASAPP), the first asynchronous algorithm for distributed pose graph optimization (PGO) in multi-robot simultaneous localization and mapping. By enabling robots to optimize their local trajectory estimates without synchronization, ASAPP offers resiliency against communication delays and alleviates the need to wait for stragglers in the network. Furthermore, ASAPP can be applied on the rank-restricted relaxations of PGO, a crucial class of non-convex Riemannian optimization problems that underlies recent breakthroughs on globally optimal PGO. Under bounded delay, we establish the global first-order convergence of ASAPP using a sufficiently small stepsize. The derived stepsize depends on the worst-case delay and inherent problem sparsity, and furthermore matches known result for synchronous algorithms when there is no delay. Numerical evaluations on simulated and real-world datasets demonstrate favorable performance compared to state-of-the-art synchronous approach, and show ASAPP's resilience against a wide range of delays in practice.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and F. Dellaert, “Distributed mapping with privacy and communication constraints: Lightweight algorithms and object-based models,” International Journal of Robotics Research, 2017.
  2. Y. Tian, K. Khosoussi, D. M. Rosen, and J. P. How, “Distributed certifiably correct pose-graph optimization.” https://arxiv.org/abs/1911.03721, 2019.
  3. D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical methods. Prentice hall Englewood Cliffs, NJ, 1989.
  4. A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,” NIPS, 2011.
  5. F. Niu, B. Recht, C. Re, and S. Wright, “Hogwild: A lock-free approach to parallelizing stochastic gradient descent,” NIPS, 2011.
  6. J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An asynchronous parallel stochastic coordinate descent algorithm,” Journal of Machine Learning Research, 2015.
  7. J. Liu and S. J. Wright, “Asynchronous stochastic coordinate descent: Parallelism and convergence properties,” SIAM Journal on Optimization, 2015.
  8. A. S. Bedi, A. Koppel, and K. Rajawat, “Asynchronous saddle point algorithm for stochastic optimization in heterogeneous networks,” IEEE Transactions on Signal Processing, 2019.
  9. X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized parallel stochastic gradient descent,” in Proceedings of the 35th International Conference on Machine Learning (ICML), 2018.
  10. X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic gradient for nonconvex optimization,” NIPS, 2015.
  11. L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asynchronous parallel algorithms for nonconvex optimization,” Mathematical Programming, 2019.
  12. D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard, “Se-sync: A certifiably correct algorithm for synchronization over the special euclidean group,” International Journal of Robotics Research, 2019.
  13. J. Briales and J. Gonzalez-Jimenez, “Cartan-sync: Fast and global se(d)-synchronization,” IEEE Robotics and Automation Letters, 2017.
  14. T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-efficient decentralized visual slam,” in ICRA, 2018.
  15. P. Lajoie, B. Ramtoula, Y. Chang, L. Carlone, and G. Beltrame, “Door-slam: Distributed, online, and outlier resilient slam for robotic teams,” IEEE Robotics and Automation Letters, 2020.
  16. Princeton University Press, 2009.
  17. R. Tron and R. Vidal, “Distributed image-based 3-d localization of camera sensor networks,” in CDC, 2009.
  18. R. Tron and R. Vidal, “Distributed 3-d localization of camera sensor networks from 2-d image measurements,” IEEE Transactions on Automatic Control, 2014.
  19. J. Knuth and P. Barooah, “Collaborative 3d localization of robots from relative pose measurements using gradient descent on manifolds,” in IEEE International Conference on Robotics and Automation, 2012.
  20. A. Cunningham, M. Paluri, and F. Dellaert, “Ddf-sam: Fully distributed slam using constrained factor graphs,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010.
  21. A. Cunningham, K. M. Wurm, W. Burgard, and F. Dellaert, “Fully distributed scalable smoothing and mapping with robust multi-robot data association,” in 2012 IEEE International Conference on Robotics and Automation, pp. 1093–1100, 2012.
  22. A. Cunningham, V. Indelman, and F. Dellaert, “Ddf-sam 2.0: Consistent distributed smoothing and mapping,” in 2013 IEEE International Conference on Robotics and Automation, 2013.
  23. S. Choudhary, L. Carlone, H. I. Christensen, and F. Dellaert, “Exactly sparse memory efficient slam using the multi-block alternating direction method of multipliers,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015.
  24. T. Fan and T. D. Murphey, “Generalized proximal methods for pose graph optimization,” in ISRR, 2019.
  25. H. Tijms, A First Course in Stochastic Models. John Wiley and Sons, Ltd, 2004.
  26. S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE Transactions on Information Theory, 2006.
  27. Y. Tian, A. Koppel, A. S. Bedi, and J. P. How, “Asynchronous and parallel distributed pose graph optimization.” https://arxiv.org/abs/2003.03281, 2020.
  28. N. Boumal, P.-A. Absil, and C. Cartis, “Global rates of convergence for nonconvex optimization on manifolds,” IMA Journal of Numerical Analysis, 2018.
  29. W. Huang, P.-A. Absil, K. A. Gallivan, and P. Hand, “Roptlib: an object-oriented c++ library for optimization on riemannian manifolds,” tech. rep., Florida State University, 2016.
  30. M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA Workshop on Open Source Software, 2009.
  31. T. Sun, R. Hannah, and W. Yin, “Asynchronous coordinate descent under more realistic assumption,” in NIPS, 2017.
  32. C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How to escape saddle points efficiently,” in ICML, 2017.
  33. C. Criscitiello and N. Boumal, “Efficiently escaping saddle points on manifolds,” in NeurIPS, 2019.
Citations (35)

Summary

We haven't generated a summary for this paper yet.