Papers
Topics
Authors
Recent
Search
2000 character limit reached

Straggler Robust Distributed Matrix Inverse Approximation

Published 5 Mar 2020 in math.NA, cs.IT, cs.NA, and math.IT | (2003.02948v3)

Abstract: A cumbersome operation in numerical analysis and linear algebra, optimization, machine learning and engineering algorithms; is inverting large full-rank matrices which appears in various processes and applications. This has both numerical stability and complexity issues, as well as high expected time to compute. We address the latter issue, by proposing an algorithm which uses a black-box least squares optimization solver as a subroutine, to give an estimate of the inverse (and pseudoinverse) of real nonsingular matrices; by estimating its columns. This also gives it the flexibility to be performed in a distributed manner, thus the estimate can be obtained a lot faster, and can be made robust to \textit{stragglers}. Furthermore, we assume a centralized network with no message passing between the computing nodes, and do not require a matrix factorization; e.g. LU, SVD or QR decomposition beforehand.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.