Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An averaging approach to the Smoluchowski-Kramers approximation in the presence of a varying magnetic field (2003.02330v1)

Published 4 Mar 2020 in math.PR

Abstract: We study the small mass limit of the equation describing planar motion of a charged particle of a small mass $\mu$ in a force field, containing a magnetic component, perturbed by a stochastic term. We regularize the problem by adding a small friction of intensity $\e>0$. We show that for all small but fixed frictions the small mass limit of $q_{\mu, \e}$ gives the solution $q_\e$ to a stochastic first order equation, containing a noise-induced drift term. Then, by using a generalization of the classical averaging theorem for Hamiltonian systems by Freidlin and Wentzell, we take the limit of the slow component of the motion $q_\e$ and we prove that it converges weakly to a Markov process on the graph obtained by identifying all points in the same connected components of the level sets of the magnetic field intensity function.

Citations (6)

Summary

We haven't generated a summary for this paper yet.