Papers
Topics
Authors
Recent
2000 character limit reached

Ensemble Kalman Inversion for nonlinear problems: weights, consistency, and variance bounds

Published 4 Mar 2020 in math.NA and cs.NA | (2003.02316v3)

Abstract: Ensemble Kalman Inversion (EnKI) and Ensemble Square Root Filter (EnSRF) are popular sampling methods for obtaining a target posterior distribution. They can be seem as one step (the analysis step) in the data assimilation method Ensemble Kalman Filter. Despite their popularity, they are, however, not unbiased when the forward map is nonlinear. Important Sampling (IS), on the other hand, obtains the unbiased sampling at the expense of large variance of weights, leading to slow convergence of high moments. We propose WEnKI and WEnSRF, the weighted versions of EnKI and EnSRF in this paper. It follows the same gradient flow as that of EnKI/EnSRF with weight corrections. Compared to the classical methods, the new methods are unbiased, and compared with IS, the method has bounded weight variance. Both properties will be proved rigorously in this paper. We further discuss the stability of the underlying Fokker-Planck equation. This partially explains why EnKI, despite being inconsistent, performs well occasionally in nonlinear settings. Numerical evidence will be demonstrated at the end.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.