Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble Kalman Inversion for nonlinear problems: weights, consistency, and variance bounds (2003.02316v3)

Published 4 Mar 2020 in math.NA and cs.NA

Abstract: Ensemble Kalman Inversion (EnKI) and Ensemble Square Root Filter (EnSRF) are popular sampling methods for obtaining a target posterior distribution. They can be seem as one step (the analysis step) in the data assimilation method Ensemble Kalman Filter. Despite their popularity, they are, however, not unbiased when the forward map is nonlinear. Important Sampling (IS), on the other hand, obtains the unbiased sampling at the expense of large variance of weights, leading to slow convergence of high moments. We propose WEnKI and WEnSRF, the weighted versions of EnKI and EnSRF in this paper. It follows the same gradient flow as that of EnKI/EnSRF with weight corrections. Compared to the classical methods, the new methods are unbiased, and compared with IS, the method has bounded weight variance. Both properties will be proved rigorously in this paper. We further discuss the stability of the underlying Fokker-Planck equation. This partially explains why EnKI, despite being inconsistent, performs well occasionally in nonlinear settings. Numerical evidence will be demonstrated at the end.

Citations (17)

Summary

We haven't generated a summary for this paper yet.