Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive Robot Training for Non-Markov Tasks (2003.02232v2)

Published 4 Mar 2020 in cs.RO and cs.AI

Abstract: Defining sound and complete specifications for robots using formal languages is challenging, while learning formal specifications directly from demonstrations can lead to over-constrained task policies. In this paper, we propose a Bayesian interactive robot training framework that allows the robot to learn from both demonstrations provided by a teacher, and that teacher's assessments of the robot's task executions. We also present an active learning approach -- inspired by uncertainty sampling -- to identify the task execution with the most uncertain degree of acceptability. Through a simulated experiment, we demonstrate that our active learning approach identifies a teacher's intended task specification with an equivalent or greater similarity when compared to an approach that learns purely from demonstrations. Finally, we demonstrate the efficacy of our approach in a real-world setting through a user-study based on teaching a robot to set a dinner table.

Citations (15)

Summary

We haven't generated a summary for this paper yet.