Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the law of killed exponential functionals (2003.02073v1)

Published 4 Mar 2020 in math.PR

Abstract: For two independent L\'{e}vy processes $\xi$ and $\eta$ and an exponentially distributed random variable $\tau$ with parameter $q>0$ that is independent of $\xi$ and $\eta$, the killed exponential functional is given by $V_{q,\xi,\eta} := \int_0\tau \mathrm{e}{-\xi_{s-}} \, \mathrm{d} \eta_s$. With the killed exponential functional arising as the stationary distribution of a Markov process, we calculate the infinitesimal generator of the process and use it to derive different distributional equations describing the law of $V_{q,\xi,\eta}$, as well as functional equations for its Lebesgue density in the absolutely continuous case. Various special cases and examples are considered, yielding more explicit information on the law of the killed exponential functional and illustrating the applications of the equations obtained. Interpreting the case $q=0$ as $\tau=\infty$ leads to the classical exponential functional $\int_0\infty \mathrm{e}{-\xi_{s-}} \, \mathrm{d} \eta_s$, allowing to extend many previous results to include killing.

Summary

We haven't generated a summary for this paper yet.