Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal sieve-based strategies for efficient estimation using machine learning tools (2003.01856v2)

Published 4 Mar 2020 in stat.ME, math.ST, and stat.TH

Abstract: Suppose that we wish to estimate a finite-dimensional summary of one or more function-valued features of an underlying data-generating mechanism under a nonparametric model. One approach to estimation is by plugging in flexible estimates of these features. Unfortunately, in general, such estimators may not be asymptotically efficient, which often makes these estimators difficult to use as a basis for inference. Though there are several existing methods to construct asymptotically efficient plug-in estimators, each such method either can only be derived using knowledge of efficiency theory or is only valid under stringent smoothness assumptions. Among existing methods, sieve estimators stand out as particularly convenient because efficiency theory is not required in their construction, their tuning parameters can be selected data adaptively, and they are universal in the sense that the same fits lead to efficient plug-in estimators for a rich class of estimands. Inspired by these desirable properties, we propose two novel universal approaches for estimating function-valued features that can be analyzed using sieve estimation theory. Compared to traditional sieve estimators, these approaches are valid under more general conditions on the smoothness of the function-valued features by utilizing flexible estimates that can be obtained, for example, using machine learning.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com