Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Sinkhorn: Optimal Transport distances from sample streams (2003.01415v2)

Published 3 Mar 2020 in math.OC and stat.ML

Abstract: Optimal Transport (OT) distances are now routinely used as loss functions in ML tasks. Yet, computing OT distances between arbitrary (i.e. not necessarily discrete) probability distributions remains an open problem. This paper introduces a new online estimator of entropy-regularized OT distances between two such arbitrary distributions. It uses streams of samples from both distributions to iteratively enrich a non-parametric representation of the transportation plan. Compared to the classic Sinkhorn algorithm, our method leverages new samples at each iteration, which enables a consistent estimation of the true regularized OT distance. We provide a theoretical analysis of the convergence of the online Sinkhorn algorithm, showing a nearly-O(1/n) asymptotic sample complexity for the iterate sequence. We validate our method on synthetic 1D to 10D data and on real 3D shape data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.