Papers
Topics
Authors
Recent
2000 character limit reached

Free pre-Lie family algebras

Published 2 Mar 2020 in math.RA | (2003.00917v1)

Abstract: In this paper, we first define the pre-Lie family algebra associated to a dendriform family algebra in the case of a commutative semigroup. Then we construct a pre-Lie family algebra via typed decorated rooted trees, and we prove the freeness of this pre-Lie family algebra. We also construct pre-Lie family operad in terms of typed labeled rooted trees, and we obtain that the operad of pre-Lie family algebras is isomorphic to the operad of typed labeled rooted trees, which generalizes the result of F. Chapoton and M. Livernet. In the end, we construct Zinbiel and pre-Poisson family algebras and generalize results of M. Aguiar.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.