Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Abel-Jacobi maps of moduli of parabolic bundles over a curve (2003.00854v2)

Published 28 Feb 2020 in math.AG

Abstract: Let $C$ be a nonsingular complex projective curve, and $\mathcal{L}$ e a line bundle of degree 1 on $C$. Let $\mathcal{M}{\alpha} := \mathcal{M}(r,\mathcal{L},\alpha)$ denote the moduli space of $S$-equivalence classes of Parabolic stable bundles of fixed rank $r$, determinant $\mathcal{L}$, full flags and generic weight $\alpha$. Let $n=$ dim$\mathcal{M}{\alpha}$. We aim to study the Abel-Jacobi maps for $\mathcal{M}_{\alpha}$ in the cases $k=2,n-1$. When $k=n-1$, we prove that the Abel-Jacobi map is a split surjection. When $k=2$ and $r=2$, we show that the Abel-Jacobi map is an isomorphism.

Summary

We haven't generated a summary for this paper yet.