Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 236 tok/s Pro
2000 character limit reached

Modular Techniques for Effective Localization and Double Ideal Quotient (2003.00496v2)

Published 1 Mar 2020 in math.AC and cs.SC

Abstract: By double ideal quotient, we mean $(I:(I:J))$ where ideals $I$ and $J$. In our previous work [11], double ideal quotient and its variants are shown to be very useful for checking prime divisor and generating primary component. Combining those properties, we can compute "direct localization" effectively, comparing with full primary decomposition. In this paper, we apply modular techniques effectively to computation of such double ideal quotient and its variants, where first we compute them modulo several prime numbers and then lift them up over rational numbers by Chinese Remainder Theorem and rational reconstruction. As a new modular technique for double ideal quotient and its variants, we devise criteria for output from modular computations. Also, we apply modular techniques to intermediate primary decomposition. We examine the effectiveness of our modular techniques for several examples by preliminary computational experiences on Singular.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)