Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representations, Metrics and Statistics For Shape Analysis of Elastic Graphs (2003.00287v2)

Published 29 Feb 2020 in cs.CV, cs.CG, and stat.ME

Abstract: Past approaches for statistical shape analysis of objects have focused mainly on objects within the same topological classes, e.g., scalar functions, Euclidean curves, or surfaces, etc. For objects that differ in more complex ways, the current literature offers only topological methods. This paper introduces a far-reaching geometric approach for analyzing shapes of graphical objects, such as road networks, blood vessels, brain fiber tracts, etc. It represents such objects, exhibiting differences in both geometries and topologies, as graphs made of curves with arbitrary shapes (edges) and connected at arbitrary junctions (nodes). To perform statistical analyses, one needs mathematical representations, metrics and other geometrical tools, such as geodesics, means, and covariances. This paper utilizes a quotient structure to develop efficient algorithms for computing these quantities, leading to useful statistical tools, including principal component analysis and analytical statistical testing and modeling of graphical shapes. The efficacy of this framework is demonstrated using various simulated as well as the real data from neurons and brain arterial networks.

Citations (15)

Summary

We haven't generated a summary for this paper yet.