Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jointly Learning to Recommend and Advertise (2003.00097v2)

Published 28 Feb 2020 in cs.IR

Abstract: Online recommendation and advertising are two major income channels for online recommendation platforms (e.g. e-commerce and news feed site). However, most platforms optimize recommending and advertising strategies by different teams separately via different techniques, which may lead to suboptimal overall performances. To this end, in this paper, we propose a novel two-level reinforcement learning framework to jointly optimize the recommending and advertising strategies, where the first level generates a list of recommendations to optimize user experience in the long run; then the second level inserts ads into the recommendation list that can balance the immediate advertising revenue from advertisers and the negative influence of ads on long-term user experience. To be specific, the first level tackles high combinatorial action space problem that selects a subset items from the large item space; while the second level determines three internally related tasks, i.e., (i) whether to insert an ad, and if yes, (ii) the optimal ad and (iii) the optimal location to insert. The experimental results based on real-world data demonstrate the effectiveness of the proposed framework. We have released the implementation code to ease reproductivity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiangyu Zhao (192 papers)
  2. Xudong Zheng (12 papers)
  3. Xiwang Yang (5 papers)
  4. Xiaobing Liu (22 papers)
  5. Jiliang Tang (204 papers)
Citations (58)

Summary

We haven't generated a summary for this paper yet.