Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Positive maps and trace polynomials from the symmetric group (2002.12887v2)

Published 28 Feb 2020 in quant-ph, math-ph, math.FA, and math.MP

Abstract: With techniques borrowed from quantum information theory, we develop a method to systematically obtain operator inequalities and identities in several matrix variables. These take the form of trace polynomials: polynomial-like expressions that involve matrix monomials $X_{\alpha_1} \cdots X_{\alpha_r}$ and their traces $\operatorname{tr}(X_{\alpha_1} \cdots X_{\alpha_r})$. Our method rests on translating the action of the symmetric group on tensor product spaces into that of matrix multiplication. As a result, we extend the polarized Cayley-Hamilton identity to an operator inequality on the positive cone, characterize the set of multilinear equivariant positive maps in terms of Werner state witnesses, and construct permutation polynomials and tensor polynomial identities on tensor product spaces. We give connections to concepts in quantum information theory and invariant theory.

Summary

We haven't generated a summary for this paper yet.