Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causality and Robust Optimization (2002.12626v1)

Published 28 Feb 2020 in stat.ML and cs.LG

Abstract: A decision-maker must consider cofounding bias when attempting to apply machine learning prediction, and, while feature selection is widely recognized as important process in data-analysis, it could cause cofounding bias. A causal Bayesian network is a standard tool for describing causal relationships, and if relationships are known, then adjustment criteria can determine with which features cofounding bias disappears. A standard modification would thus utilize causal discovery algorithms for preventing cofounding bias in feature selection. Causal discovery algorithms, however, essentially rely on the faithfulness assumption, which turn out to be easily violated in practical feature selection settings. In this paper, we propose a meta-algorithm that can remedy existing feature selection algorithms in terms of cofounding bias. Our algorithm is induced from a novel adjustment criterion that requires rather than faithfulness, an assumption which can be induced from another well-known assumption of the causal sufficiency. We further prove that the features added through our modification convert cofounding bias into prediction variance. With the aid of existing robust optimization technologies that regularize risky strategies with high variance, then, we are able to successfully improve the throughput performance of decision-making optimization, as is shown in our experimental results.

Summary

We haven't generated a summary for this paper yet.