Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Genetic algorithms with permutation-based representation for computing the distance of linear codes (2002.12330v2)

Published 27 Feb 2020 in cs.IT and math.IT

Abstract: Finding the minimum distance of linear codes is an NP-hard problem. Traditionally, this computation has been addressed by means of the design of algorithms that find, by a clever exhaustive search, a linear combination of some generating matrix rows that provides a codeword with minimum weight. Therefore, as the dimension of the code or the size of the underlying finite field increase, so it does exponentially the run time. In this work, we prove that, given a generating matrix, there exists a column permutation which leads to a reduced row echelon form containing a row whose weight is the code distance. This result enables the use of permutations as representation scheme, in contrast to the usual discrete representation, which makes the search of the optimum polynomial time dependent from the base field. In particular, we have implemented genetic and CHC algorithms using this representation as a proof of concept. Experimental results have been carried out employing codes over fields with two and eight elements, which suggests that evolutionary algorithms with our proposed permutation encoding are competitive with regard to existing methods in the literature. As a by-product, we have found and amended some inaccuracies in the MAGMA Computational Algebra System concerning the stored distances of some linear codes.

Citations (13)

Summary

We haven't generated a summary for this paper yet.