Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Action Quality Assessment using Siamese Network-Based Deep Metric Learning (2002.12096v1)

Published 27 Feb 2020 in cs.CV

Abstract: Automated vision-based score estimation models can be used as an alternate opinion to avoid judgment bias. In the past works the score estimation models were learned by regressing the video representations to the ground truth score provided by the judges. However such regression-based solutions lack interpretability in terms of giving reasons for the awarded score. One solution to make the scores more explicable is to compare the given action video with a reference video. This would capture the temporal variations w.r.t. the reference video and map those variations to the final score. In this work, we propose a new action scoring system as a two-phase system: (1) A Deep Metric Learning Module that learns similarity between any two action videos based on their ground truth scores given by the judges; (2) A Score Estimation Module that uses the first module to find the resemblance of a video to a reference video in order to give the assessment score. The proposed scoring model has been tested for Olympics Diving and Gymnastic vaults and the model outperforms the existing state-of-the-art scoring models.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.