Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimality and Stability in Non-Convex Smooth Games (2002.11875v3)

Published 27 Feb 2020 in cs.LG, math.OC, and stat.ML

Abstract: Convergence to a saddle point for convex-concave functions has been studied for decades, while recent years has seen a surge of interest in non-convex (zero-sum) smooth games, motivated by their recent wide applications. It remains an intriguing research challenge how local optimal points are defined and which algorithm can converge to such points. An interesting concept is known as the local minimax point, which strongly correlates with the widely-known gradient descent ascent algorithm. This paper aims to provide a comprehensive analysis of local minimax points, such as their relation with other solution concepts and their optimality conditions. We find that local saddle points can be regarded as a special type of local minimax points, called uniformly local minimax points, under mild continuity assumptions. In (non-convex) quadratic games, we show that local minimax points are (in some sense) equivalent to global minimax points. Finally, we study the stability of gradient algorithms near local minimax points. Although gradient algorithms can converge to local/global minimax points in the non-degenerate case, they would often fail in general cases. This implies the necessity of either novel algorithms or concepts beyond saddle points and minimax points in non-convex smooth games.

Citations (12)

Summary

We haven't generated a summary for this paper yet.