Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Off-Policy Evaluation and Learning for External Validity under a Covariate Shift (2002.11642v3)

Published 26 Feb 2020 in stat.ML, cs.LG, and econ.EM

Abstract: We consider evaluating and training a new policy for the evaluation data by using the historical data obtained from a different policy. The goal of off-policy evaluation (OPE) is to estimate the expected reward of a new policy over the evaluation data, and that of off-policy learning (OPL) is to find a new policy that maximizes the expected reward over the evaluation data. Although the standard OPE and OPL assume the same distribution of covariate between the historical and evaluation data, a covariate shift often exists, i.e., the distribution of the covariate of the historical data is different from that of the evaluation data. In this paper, we derive the efficiency bound of OPE under a covariate shift. Then, we propose doubly robust and efficient estimators for OPE and OPL under a covariate shift by using a nonparametric estimator of the density ratio between the historical and evaluation data distributions. We also discuss other possible estimators and compare their theoretical properties. Finally, we confirm the effectiveness of the proposed estimators through experiments.

Citations (48)

Summary

We haven't generated a summary for this paper yet.